ISSN 0974-763X

SOUTH ASIAN JOURNAL OF MANAGEMENT RESEARCH (SAJMR)

SPECIAL ISSUE

Volume 13, No. 2

April, 2023

Chhatrapati Shahu Institute of Business Education & Research (CSIBER)

(An Autonomous Institute) University Road, Kolhapur-416004, Maharashtra State, India.

SOUTH ASIAN JOURNAL OF MANGEMENT RESEARCH

(SAJMR)

ISSN 0974-763X (An International Peer Reviewed Research Journal)

Published by

CSIBER Press, Central Library Building Chhatrapati Shahu Institute of Business Education & Research (CSIBER) University Road, Kolhapur - 416 004, Maharashtra, India Contact: 91-231-2535706/07 Fax: 91-231-2535708 Website : www.siberindia.edu.in Email : sajmr@siberindia.edu.in, sibersajmr@gmail.com

Chief Patron Late Dr. A.D. Shinde

Patrons

Dr. R.A. Shinde Secretary & Managing Trustee CSIBER, Kolhapur, India CA. H.R. Shinde Trustee Member CSIBER, Kolhapur, India

Editor Dr. R.S. Kamath CSIBER, Kolhapur, India

Editorial Board Members Dr. S.P. Rath Director, CSIBER, Kolhapur Dr. Francisco J.L.S. Diniz CETRAD, Portugal Dr. Paul B. Carr Reent University, USA Dr. T.V.G. Sarma CSIBER, Kolhapur, India Dr. K. Lal Das RSSW, Hyderabad, India. Dr. Deribe Assefa Aga Ethiopian Civil Service University, Addis Ababa, Ethiopia **Dr. Biswajit Das** KSOM, KIIT, Bhubaneshwar **Dr. Yashwant Singh Rawal** Parul University, Vadodara, India **Dr. Nandkumar Mekoth** Goa University, Goa **Dr. Gary Owens** CERAR, Australia Dr. Rajendra Nargundkar IFIM, Bangalore, India Dr. Yogesh B. Patil Symboisis Inst. Of International Bsiness, Pune, India Dr. R.M. Bhajracharya Kathmandu University, India Dr. K.V.M. Varambally Manipal Inst. Of Management, India. Dr. B.U. Dhandra Gulabarga University, India Dr. Pooja M. Patil CSIBER, Kolhapur, India

Type Setting & Formatting Mr. S.Y. Chougule

South Asian Journal of Management Research (SAJMR)

Volume 13, No. 2	Special Issue	April, 2023
	CONTENT	
Editorial Note		
Effects of Workplace Envi	ronment on employee Performance In The	
Ministry of Revenue		1 16
Zewdie Zakie Koyira	l UD turining Conton	1 – 16
Consultant at Leadership, Policy of Ethiopian Civil Service University		
Customer's Perspective on	n Green Banking In Mauritius	
Eric V. Bindah		
University of Technology, Mauriti Leenshya Gunnoo	US	17 – 29
University of Technology, Mauriti	us	
Critical Review of The Cit	tizens' Channel Preferences And Level of E-	
Participation In Municip	pal Governance Process In Mekelle City	
Tigray; Ethiopia		
Dr. Meresa Ataklty	Development from Ethiopian Civil Service University	30 - 45
(ECSU), Addis Ababa, Ethiopia	Development from Ethiopian Civil Service University	
Dr. Kanchan Singh		
	nd Development (UPD),College of Urban Development & rvice University (ECSU), Addis Ababa, Ethiopia	
Saving Practice Among I	Micro And Small Enterprise Operators In	
8	Comparison In Yeka Sub City	
Sofoniyas Mekonnen		46 - 56
	ancial Management Training and Consultancy Ethiopian	
Ethiopia, Africa	ch and Publication Coordination Office Addis Ababa,	
Role of Artificial Intelligen	ce (AI) In Hospitality Industry	
Seema Jaipuriar		
Research Scholar, Amity Universit	ty, Rajasthan	
Prof. (Dr.) Sanjeeb Pal Professor and Director, Amity Univer	rsity, Rajasthan	57 - 62
Dr. Yashwant Singh Rawal		
Associate Professor, Parul University	, Gujarat.	
	rds Corporate Social Responsibility: A Study	
in the Banking Industry in	Mauritius	
<i>Eric V. Bindah</i> <i>University of Mauritius</i>		63 – 77
Leenshya Gunnoo		
University of Technology, Mauriti	US	

Implementations of CQI in Public Hospitals - Addis Ababa, Ethiopia	
Ketemaw Zewude	
Public Health Department in Reproductive Healths, at Yekatit 12 Hospital Medical College, Addis Ababa, Ethiopia	
Dessie Abebaw	
Public Health Department of Reproductive Healths, Yekatit 12 Hospital Medical	
College, Addis Ababa, Ethiopia	78
Baye Sisay	
Department of Public Management, Ethiopian Civil Service University, Addis Ababa, Africa	
Getabalew Endazenaw	
Public Health Department of Reproductive Healths, Yekatit 12 Hospital Medical College, Addis Ababa, Ethiopia	
A Review of The Legal Framework on Money Laundering And	
Terrorism Financing In Mauritius In The Context of The Trade	
Relationship Between Mauritius And India	
Bhavana Maĥadew	92 -
Senior Lecturer	
School of Business Management & Finance, University of Technology, Mauritus Bhavana.mahadew@utm.ac.mu	
A Micro-Businesses Perspective on Factors Affecting the Adoption of	
Mobile Payment Services During The Covid-19 Pandemic In Mauritius	
Leenshya Gunnoo	103 -
University of Technology Mauritius Eric V. Bindah	105 -
University of Mauritius	
Content Analysis of BYJU's App Reviews: Data Analytics Approach	
S.S. Jadhav	
Student, MBA, CSIBER, Kolhapur, India R.S. Kamath	115 –
Associate Professor, CSIBER, Kolhapur, India	
Computerized Generic Model for Selection of Manufacturing Method Based on Multiple Objectives and Functions	
Girish R. Naik	
Dept of Mech.Engg., Gokul Shirgaon, Kolhapur – 416234 India	130 -
Poornima G. Naik	
Dept of Computer Studies, CSIBER, Kolhapur – 416004, India	
Technology's Impacts on Tourism Management: A Study	140
Saurabh Dattatray Vichare	143 -
Student, CSIBER, Kolhapur	
A case study : Utilization of Boiler Fly Ash To Reduce The Parameters of Effluent Generated In Shree Datta S.S.S.K. Ltd., Shirol	
Deepa Bhandare	
Env. Officer, SDSSSK	1 50
Varsha Kadam	150 –
Field Officer, MPCB	
Vishwajit Shinde	
Prod. Manager, SDSSSK	

Computerized Generic Model for Selection of Manufacturing Method Based on Multiple Objectives and Functions

Girish R. Naik	Poornima G. Naik
Dept of Mech.Engg.,	Dept of Computer Studies,
Gokul Shirgaon,	CSIBER, Kolhapur – 416004
Kolhapur – 416234	India
India	

ABSTRACT: Presently many manufacturing methods are available and the challenge before the organizations is the selection of appropriate manufacturing method based on organization objective and functional requirements. Owing to the dynamic nature of business environment every organization focuses on next stage of excellence by constantly updating and upgrading its business objectives. As the installation of a manufacturing method might be a very time consuming and expensive project, organization needs a tool support for the same. There is no single solution that is best for everyone. The problem boils down to proposing methods that are mapped according to the multiple objectives and functions aimed at improving organizational performance. In the current research, the authors have designed and implemented a generic manufacturing method selection model for the selection of the appropriate manufacturing process based on organizational objectives and functions.

Keywords: Auxiliary Solution, Grading Table, Manufacturing Method, Method Selection Matrix, Philosophical Solution, Software Solution, Technological Solution.

Introduction

The systematic analysis of organizational objectives and functional requirements is a basis for manufacturing method selection. Hence more than 110 manufacturing methods belonging to different classes have been proposed. For every strategic choice that organization makes for the manufacture of a new product, cost and quality management initiatives must be validated by selection of appropriate manufacturing method in order to meet organizational multi criteria economic objectives. The basic objective is to make the entire value chain faster, better and more profitable. The manufacturing method selection approach is conceptualized and designed to meet organization's specific requirements based on their objectives and functional requirements. This system revolves around four pivots, method selection based on single objective, multi objectives, single function and multi-functional requirements offering cost conscious and cost improvement methods

Manufacturing methods are categorized primarily into 5 different categories based on technological solution, software solution, management solutions, philosophical solutions, and auxiliary solutions. In order to provide a useful tool for managers in the selection of the best manufacturing method, two mapping methods based on organizational objectives and functions crucial to the organization are available. Gideon Halevi (Halevi 2003) has proposed 16 different manufacturing objectives, 24 different organizational functions grouped in four categories containing six functions each and 110 different manufacturing methods. The author has presented a review of manufacturing methods and their objectives (Halevi 2003). In the current work, the objectives as proposed by Gideon Halevi are considered for selection of a particular manufacturing method.

The applicability of each method to a particular objective is assigned one of the following grades based on its significance to the organization.

- Excellent for a particular objective Good
- Very Good
 Fair

Objective and Function Grading Table

Method No.	Class		Function						s Function															Objective																	
											2					3)					4				1	2	1	4	;	6	1	8	9	10	11	12	13	¥	13	2
1	5	1	2	3	4	5	6	1	2	3	4	5	6	1	2	3	4	5	6	1	2	3	4	5	6																
2	Μ																																								
3	Μ																												Γ	Γ		T									
	X	T				-														Î			1	1	1					F		T									-
	P	F	U	N	C	T	1	0	N			G	R	A	D	E	S										M	E	ī	H	0	D		G	R	A	D	E	S		
																				Î																					Ì
110								1						7155										1	1																

The structure of the objective and function grading table is shown in Fig. 1.

Fig. 1. Structure of Objective and Function Grading Table.

The objective and function grading table consists of 110 rows and 42 columns. The second column refers to the method classification. The columns in the range 3-26 refer to 4 different functions grouped into 6 different categories. The last 16 columns refer to the 16 different objectives. If the method in a particular row is not applicable to the objective or function in the corresponding column then the cell is indicated as blank.

In the current research the authors have designed a computer based framework for selection of manufacturing method based on multiple objectives and multiple functions. The method is generic and easily accommodates new objectives and functions.

Literature Review

Manufacturing methods can be systematically categorized on the basis of their main focus. Methods like Computer Aided Design (CAD) / Computer Aided Manufacturing (CAM), flexible manufacturing systems and manufacturing execution systems are supported by manufacturing hardware (Halevi 2003, Gardan & Minich 1992) In order to cater the needs of industry, knowledge management emerged as key area of research which resulted in focus on areas like expert system, artificial intelligence etc. (Co-Davies 1986, Coyne et.al. 1989). During the recessionary trends survival of organizations was crucial. This led to focus on improvement in productivity and to sustain lean phase in business cycle, organizations employed total cost management to remain competitive which resulted in emergence of methods like lean manufacturing, optimized production technology, theory of constraints etc. focusing on production planning and production control (Munro 1999, Goldratt 1988). Then focus shifted to more simplification of production processes, this led to emergence of group technology, just-in-time, constant work in process for the efficient utilization of organizational resources (Rao & Scheraga 1988). Cost leadership equips organizations with competitive advantage. Cost efficiency of organization's activities reflects its ability to perform similar activities better than its competitors. This led to emergence of methods like activity based costing, cost estimation, statistical process control etc. (Turny 1990). Competitive environment compelled organizations to fine tune their product design strategies. As a long term strategy, many organizations focused on building capacities for product design and development. The challenges faced by the organizations were controlling engineering costs against targets and mainly conforming product development process to meet time to market targets. These strategic initiatives led to emergence of methods related to product design and development (Datz 1987). Efficient human resource management removes redundancy and powers productivity. Efficient

performance management is proving to be an excellent cost optimization tool in the hands of smart organizations. It is the employee who drives the process rather than organization. The individuals input ensures an achievement oriented culture especially where change management is concerned. The main objective was to build learning organization to meet future challenges through development of high performing, energetic and enthusiastic human resource. This led to dedicated efforts in the direction of human resource development and management related methods such as executive excellence, cross functional leadership etc. (Becker & Gerhart 1996).

Research Methodology

The following section presents the mathematical mode for selection of manufacturing method based on multiple objectives and functions. The conceptual model is presented

Mathematical Formulation - Method Selection Matrix

The possible manufacturing methods suitable for a specific objective are organized in a matrix of order 11x10 in a method selection matrix. The method selection matrix has an element 1 if a particular manufacturing method is suitable for that objective, irrespective of its grade, otherwise the corresponding entry has a value 0.

Multi Objective Multi Function Criterion for Manufacturing Method Selection

Let $M^{(k)}$ represent a method selection matrix of order 11x10 for kth objective where the ijthelement of $M^{(k)}$ is given by

m $_{ij}^{(k)} = 1$ if $(i+j)^{th}$ method has a grade 'a' or 'b' for the objective k, where $1 \le k \le 16$ or a function f where f ϵ [1.1-1.6, 2.1-2.6, 3.1-3.6, 4.1-4.6]

in the case of single objective and/or single function criteria,

= g * c * o if the $(i+j)^{th}$ method is applicable to objective kin the case of multi objective criteria and = g * c * f if the $(i+j)^{th}$ method is applicable to function kin the case of multi-function criteria.

In the above expressions g, c, o and f, refer to grade weight, class weight, objectiveweight and function weight, respectively.

We define the union operation on the method selection matrices M and M' as follows.

Let $M = [m_{ij}]$ and $M'= [m'_{ij}]$ represent two method selection matrices. $M \cup M' = m_{ij} + m'_{ij}$ iff $m_{ij} <> 0$ and $m'_{ij} <> 0$ = 0, otherwise.

With this type of representation, where various methods available for each objective and function are represented in a matrix form, it becomes plausible to address various cases pertaining to the manufacturing method selection for

- Single Objective
- Single Function
- Single Objective and Single function
- Multi Objective
- Multi Function
- Multi Objective and Multi Function

Without such a representation, the number of various permutations and combinations to be considered in various cases ignoring different classes are depicted Table 1.

Selection Type	No. of Permutations
Single objective	16
Single function	24
Single objective and single function	384
Multiobjective	$^{16}c_1 + ^{16}c_2 + ^{16}c_3 + \ldots + ^{16}c_{16} = 2^{16} \cdot 1 = 65,536$
Multi-function	$^{24}c_1 + ^{24}c_2 + ^{24}c_3 + \ldots + ^{24}c_{24} = 2^{24} - 1 = 1,67,77,216$
Multi-objective and multi-function	$(2^{16}-1) * (2^{24}-1) = 10,99,51,16,27,776$

 Table 1.
 No of Permutations for Selection of Manufacturing Method in variousScenarios

As seen from the Table 1., no. of permutations for multi-objective, multifunction criteria boils down to 10 trillion. Hence the above model tries to address this issue through data matrix representation thereby offering the solution in polynomial time. Without such a representation, the number of various permutations and combinations to be considered in various cases are depicted Table 1. The work flow of the conceptual model is depicted in Fig. 2.

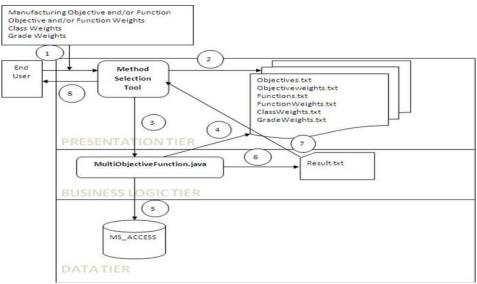
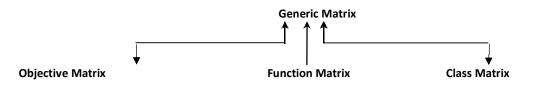



Fig. 2. Work Flow of the Conceptual Model

Class Diagram for Implementation of Business Logic

Generic Matrix
name : String grade : int[][]
Generic Matrix (Name: String, Grades :int[][]) to String(void):String
Union (GenericMatrix gm):Generic Matrix Find Method (Om: Objective Matrix): Method

Objective Matrix, Function Matrix and Class Matrix are simply the symbolic names for Generic Matrix having the same structure as Generic Matrix.

Method	MultiObjectiveFunction
method number :int method name :	grade : int[][]
string classification code : string	main(string[]):void create Objective Grade
value : int	Matrix():voidcreate Function Grade
method(int, String, String, int):void	Matrix():void
to String(void):String	find Methods (type: String): String[]

Results and Experimental Work

The model developed in section 3 is applied for the selection of manufacturing method based on multi objectives and multi functions.

Problem Definition: Select a set of manufacturing methods for a hypothetical organization conforming to the following organizational objectives.

Objective 2– Reduce Production costs

Objective 3– Rapid response to market demands – product design

Objective 6 - Progress towards zero inventory - increase inventory turnaround

Objective 7 – Improve management knowledge and information– enterprisecommunication **Objective 13**– Improve enterprise integration – improving supply chain globally,

The weights assigned to different objectives, classes and grades are depicted in Tables2.1-2.3

Table 2.1 Objective Weights

Table 2.2 Class Weights

Table 2.3 Grade Weights

Objective	Weight	Class	Weight	Grade	Weight
2	10	М	4	а	6
3	8	Р	3	b	4
6	8	S	5	С	3
7	6	Т	5	d	1
13	6	Х	1		

Solution :

The method selection matrix is formulated for each of the objectives taking into account, corresponding objective weights, weight of the class to which the method belongs and objective's grade weight as given in Table 2.1-2.3.

The method selection matrices for objectives 2 and 3 are depicted in Fig. 3 and similar matrices exist for other objectives.

															-	
	Metho	d Numl	bers fo	r Obj	ective 2		0	15Ŏ	0	12Ŏ	0	ŏ0	120	0		90
1	22	43	4	57	77	94	0	0	0	120	40	0	90	0		0
3	24	44		58	79	95	150	0	30	0	150	0	160	90		0
							90	0	0	50	150	0	0	30	1	
6	26	46	0	50	82	97	0	0	0	120	120	0	90	30	9	-
8	27	47	(52	84	98	120	160	90	120	0	0	160	90	12	
9	30	48	(57	86	99	40	0	120	0	0	0	0	90	20	30
3	33	50		58	87	101	120 0	0 0	0 50	90 0	0 150	0 0	30 90	120 30	0 98	
4	34	51		69	88	103	8	40	50 150	120	120	150	9	30 30	70 40	
							0	160	0	120	0	30	0	90	0	
6	37	52		70	91	105	0	0	0	0	0	0	0	0	0	
9	38	53	2	73	92	107	I									_
d	39	56		76												
<u> </u>		50		/4	93											
	Metho	d Numt	bers for	r Obje	ctive 3		0	0	32	96	24	Ő	0	160	24	
2	Metho					98	8	0	32	96 Ø	24 24	0 40	0	160 0	24 Ø	
	Metho	d Numt	bers for	r Obje	ctive 3	98 101	-									
2	Metho	d Numl 38	bers for 50	r Obje 67	ctive 3		0	0	160	0	24	40	0	0	0	
2	Metho 2 21 3 23	d Numb 38 39	bers for 50 51	r Objer 67 68	ctive 3	101	0 40	0 160	160 0	0 72	24 Ø	40 24	0 0	0 72	0 0	
2	Metho 2 21 3 23 4 25 7 27	d Numb 38 39 42	bers for 50 51 52	67 68 69	ctive 3 8: 8: 8:	101 102	0 40 0	0 160 160	160 0 240	0 72 0	24 0 120	40 24 144	0 0	0 72 24	0 0 24	
234	Metho 2 21 3 23 4 25 4 25 3 25	d Numb 38 39 42 43	50 51 52 53	67 67 68 69 70	ctive 3 82 82 82 82 84 84 84 84 84 84 84 84 84 84 84 84 84	101 102 103	0 40 0	0 160 160 0	160 0 240 24	0 72 0 128	24 0 120 96	40 24 144 240	0 0 0 24	0 72 24 24	0 0 24 24	
234	Metho 2 21 3 23 4 25 3 25 3 31	d Numb 38 39 42 43 44	bers for 50 51 52 53 54	Cobject 67 68 69 70 73	ctive 3 83 85 86 88 90	101 102 103 104	8 48 8 8 72	0 160 160 0 128	160 0 240 24 24	0 72 0 128 96	24 Ø 120 96 128	40 24 144 240 0	0 0 24 0	0 72 24 24 96	0 0 24 24 32	
2 3 4 7 8 9	Metho 2 21 3 23 4 25 3 25 3 25 3 31 4 32	d Numb 38 39 42 43 44 44 44	50 51 52 53 54 57	r Obje 67 68 69 70 73 75	ctive 3 82 82 85 86 90 91	101 102 103 104 105	0 40 0 8 72 0 128 24	0 160 160 0 128 24	160 0 240 24 24 24 128 0 160	0 72 0 128 96 0 24 96	24 0 120 96 128 0	40 24 144 240 0 72	0 0 24 0	0 72 24 24 96 72	0 24 24 32 120	
2 3 4 7 8 9 12	Metho 2 21 3 23 4 25 3 25 3 31 2 32 4 34	d Numb 38 39 42 43 44 44 44 44	50 51 52 53 54 57 58	Obje 67 68 69 70 73 75 77	ctive 3 83 85 86 88 90 91 91 92	101 102 103 104 105 106	0 40 0 72 0 128 24 160	0 160 160 128 24 0 0 24	160 0 240 24 24 24 128 0 160 40	0 72 0 128 96 0 24 96 32	24 0 120 96 128 0 0 0 128	40 24 144 240 0 72 32 96 160	0 0 24 0 0 24 24 0	0 72 24 24 96 72 128 0 8	0 24 24 32 120 0 24 128	
2 3 4 7 8 9 12 14	Metho 2 21 3 23 4 25 3 25 3 21 3 23 4 25 3 21 3 23 4 32 3 32 4 34 5 35	d Numb 38 39 42 43 43 44 45 45 46 47	bers for 50 51 52 53 54 57 58 61	Object 67 68 69 70 73 75 77 79	ctive 3 83 83 86 88 90 91 92 93	101 102 103 104 105 106 109	0 40 0 8 72 8 128 24	0 160 160 0 128 24 0 0	160 0 240 24 24 24 128 0 160	0 72 0 128 96 0 24 96	24 0 120 96 128 0 0	40 24 144 240 0 72 32 96	0 0 24 0 0 0 24	0 72 24 24 96 72 128 0	0 24 24 32 120 0 24	

Method Selection Matrices for Objectives 2 and 3.depicts the application of union operation on the method selection matrices for objectives 2 and 3.

Objective 2 U Objective 3

Method Numl	pers for Object	ive 2 and Obje	ctive 3
3	43	58	86
8	44	62	88
9	46	67	91
14	47	68	93
20	48	69	95

Fig. 4.

Fig. 3.

Method Nu	mbers for Ob	jective 2 and	Objective 3
27	50	70	
34	51	73	
37	52	77	
38	53	79	
39	57	82	

0	0	0	216	0	0	0	0	114	248
0	0	0	0	64	0	0	0	0	0
190	0	0	0	0	0	0	162	0	0
Ø	0	0	0	270	0	0	54	34	360
0	0	0	248	216	0	114	54	114	0
192	288	114	216	0	0	0	186	152	0
0	0	248	0	0	0	0	162	320	248
248	0	0	114	0	0	0	248	0	216
0	0	210	0	0	0	114	0	114	0
0	64	190	152	248	310	0	0	168	0
0	288	0	248	0	126	0	0	0	0
Ø	Ø	Ø	0	0	0	0	Ø	Ø	0

Fig. 4. Application of Union Operation on the Method Selection Matrices forObjectives 2 and 3

Similarly, performing the union of method selection matrices for objectives 2, 3, 6, 7 and 13, we get the final matrix shown in Fig. 5.

Objective 2 U Objective 3 U Objective 6 U Objective 7 U Objective 13

	Numbers for Ob ective 6 and Obj		
9	39	98	
14	43		
20	50		
37	68		
38	94		

Ø	Ø	Ø	0	Ø	0	Ø	Ø	Ø	544
Ø	0	Ø	0	138	0	Ø	0	Ø	Ø
470	Ø	0	0	0	0	Ø	Ø	Ø	Ø
Ø	Ø	0	0	0	0	Ø	134	100	760
Ø	Ø	Ø	544	0	0	Ø	Ø	Ø	Ø
390	Ø	Ø	0	0	0	Ø	Ø	Ø	Ø
Ø	Ø	Ø	0	0	0	Ø	Ø	690	Ø
0	Ø	Ø	0	Ø	0	Ø	Ø	Ø	Ø
0	Ø	Ø	0	0	0	Ø	Ø	Ø	Ø
0	Ø	Ø	0	544	0	Ø	Ø	440	Ø
0	Ø	Ø	0	Ø	0	Ø	Ø	Ø	Ø
Ø	Ø	Ø	0	0	Ø	Ø	Ø	Ø	Ø

Fig. 5. Final Selection Matrix for the Objectives 2, 3, 6, 7 and 13.

The generic model presented above is implemented in Java in a business tier with MS-Access as back end for storing the domain specific information. The structure of the database is shown in Figure 5. The Graphical User Interface is developed in VB which invokes the business logic for generating the required output. The output is routed to atext file which is retrieved and displayed by the presentation tier logic. The graphical user interface of presentation tier is depicted in Figure 6.

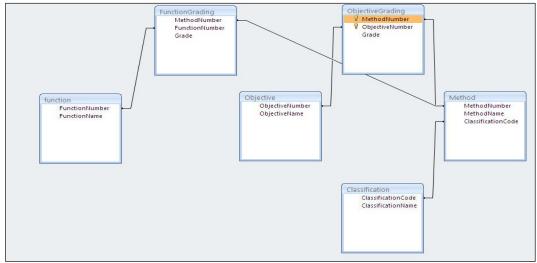


Fig. 6. Structure of Manufacturing Database

Fig. 7. Graphical User Interface for Presentation Tier

Fig. 8(a)-8(b) depict the selection of manufacturing method based on asingle objective for all classes and class M, respectively.

	C Meeting Delivery dates - production planning and control	
Class	C Recuce Procuction costs	Selected Methods
Salert All P M	C Rapid response to market demands - product design	9-Eorderless corporation 13-Cellular manufacturing 43-Extended enterprise
⊢ P	C Reduce lead time - production	38-Just-In-time manufacturing 30-Kanban system
□ \$	C Progress towards zero defects - sua ity control	34-Supply chain management 38-Time base competition
ПТ	€ Progress towards zero inventory increase inventory furnaround	105-Workflow management
	C Improve management knowledge and information - enterprise communication	
ΓX	C Improve and increase teamwork collaboration	
	C Improve and increase team work collaboration	
Find Methods	C Improve procurement management and control	
<u></u>	C Management strategic planning - competitiveness - globalization	
	○ Improve human resources management	
	C Improve enterprise integration - inproving supply chain globally	1
	C Cortinuous improvament	
	C Environmental production	
	C Marketing - market share	

Fig. 8 (b) Selection of Manufacturing Methods for a Single Objective (Objective 6) forClass M

Figure 9(a) depicts the selection of manufacturing methods for the function 4.3, Focus on Management Control with Figure 9 (b) depicting the execution of business logic in middle tier.

lass Ant	+ 4. Focus on Management Functions	1-Activity-based costing 10-Business intelligence and data warehousing 15-Collaborative manufacturing in virtual enterprises 24-Computer-oriented PICS 32-Digits factory 39-Enterprise resource planning 70-Master product scheduling 81-Performance measurement system 96-Team performance measuring and managing 109-Workflow management 110-Workflow management
Find Methods	 4.4 Focus on Decision Making Methods 4.5 Focus on Human R Utilization 4.6 Focus on Guidance 	

	Ø	0	0	0	0	Ø	Ø	Ø	Ø	
	1	Ø	Ø	Ø	0	Ø	Ø	Ø	٥	
	Ø	Ø	Ø	Ø	Ø	1	Ø	9	Ø	
	Ø	Ø	0	Ø	0	Ø	9	Ø	1	
	Ø	Ø	Ø	Ø	0	Ø	۵	Ø	Ø	
0-Bu	siness :		encĕ and			g terprise:	3			

Fig. 9 (a) Selection of Manufacturing Methods for a Single Function 4.3

Fig. 9(b) Execution of Business Logic in Middle Tier

Figure 10(a) and 10(b) depict the selection of manufacturing methods basedon multi objectives and multi objectives and multi functions, respectively.

C:\WINDOWS\system32\cmd.ex	e	- 🗆 X
G:\multiobjectivefunction≻c	in and the second se	-
G:∖≻g:		
G:\≻cd g:\multiobjectivefund	ction	
G:\multiobjectivefunction>se	et path=C:\Program Files\Java\jdk1.5.0\bin	
G:\multiobjectivefunction>s	et classpath=.	
G:\multiobjectivefunction>ja	avac MultiObjectiveFunction4.java	
G:\multiobjectivefunction>ja result : Selected Method	ava MultiObjectiveFunction4	
Method Number	: 39 Enterprise resource planning : 8 : 760	
G:\multiobjectivefunction)pa Press any key to continue .		-

Fig. 11(b) Execution of Business Logic in Multi objective Method Selection

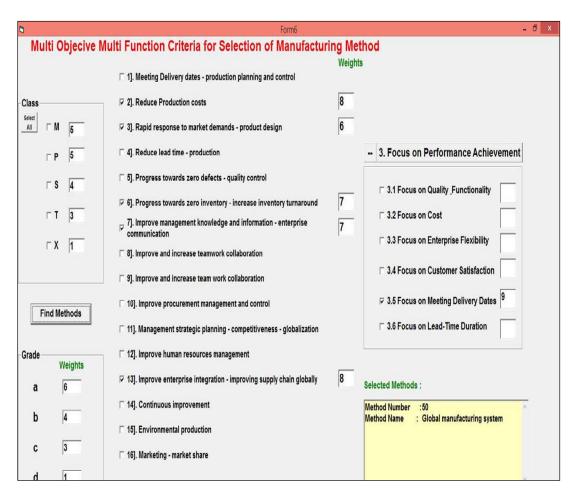


Fig. 10(a). Selection of Manufacturing Methods Based on Multi Objectives andMulti Functions

Fig. 10(b) Execution of Business Logic in Multi objective and Multi Function Method Selection

-

Scope for Future Work

The current research can be extended further to develop a model based on fuzzy logic for fine tuning the selection criteria providing a blended approach where a single method fails to meets the objectives and functions.

References:

- Halevi, G (2003) Handbook of Production Management Methods, Butterworth Heinemann Publications, ISBN 0 7506 5088 5, pp. 2-16.
- Gardan, Y. and Minich, C. (1992), 'Feature-based models for CAD/CAM and their

Limits', Computers in Industry, vol. 23, pp. 3-13.

- Co-Davies, B.J. (1986), 'Application of Expert Systems in Process Planning', *Annals of CIRP*, vol. 35, no.2, pp. 451-452.
- Coyne, R. D., Rosenman, M.A., Radford, A.D. (1989), Knowledge-based Design Systems, Addison-Wesley.
- Munro S. (1999), 'Lean Manufacturing Starts With Lean Design', Automotive Manufacturing and Production, vol. 111, no. 8, pp. 27.

Goldratt E., 'The fundamental measurements', Theory of Constraints Journal, vol. 1, no. 3, 1988.

- Rao, A. and Scheraga, D. (1988), 'Moving from manufacturing resource planning to Just- In-Time manufacturing', *Production and inventory Management Journal*, vol. 29,no. 1, pp. 44-50.
- Turny, P.B. (1990), 'What is the scope of activity based costing? ', *Journal of Cost Management*, vol. 3, no. 4, pp. 40-42.
- Datz D. (1987), 'The Effect of Product Design on Product Quality and Product Cost', *Quality Progress*, vol. 20, no. 6, pp. 63-67.
- Becker and Gerhart, B. (1996), 'The impact of human resource management on organizational performance : Progress and Prospects', *Academy of Management Journal*, vol. 39, pp. 770-801.
